基本概念
在接觸輔導(dǎo)書之前最好先過一遍教材,以便大致有個了解,最好結(jié)合考綱,這樣有針對性。同濟版《高等數(shù)學(xué)》大家應(yīng)該都有,看教材時,所有定理的證明都可以跳過,比如第一章極限,看上去就讓人頭暈的“ε—δ”語言是數(shù)學(xué)系的同仁作的工作,不用管它,只需要看到一個初等函數(shù)后會用“代入法”求其在某一點的極限就可以了,書上有很多東西寫得很詳細,看的時候要抓主要矛盾,有所取舍,具體說起來就是著重考綱中要求為“理解”和“掌握”的部分。但因為了解過程也有助于記憶結(jié)論,所以如果時間允許,也可以大致了解一下重要定理的證明思路。不管看不看過程,最終的目的只有一個:記得公式和定理。不同于高考,考研數(shù)學(xué)要求記憶的知識點非常多,所以必須要像學(xué)習(xí)英語單詞那樣時常回憶,加深印象。
記得知識點以后要做什么?自然是用于解題。這時候就出現(xiàn)了一個值得注意的問題,那就是定理和公式成立的條件,還是拿上面這個例子來說,函數(shù)能夠代入某點的取值來求極限的條件是什么?那就是這個函數(shù)是連續(xù)函數(shù),雖然說我們碰到的大部分函數(shù)都是連續(xù)的,但最好還是不要想當(dāng)然。類似的例子還有很多,而且就專家的經(jīng)驗來看,很多人容易忽視這個環(huán)節(jié)。連續(xù)函數(shù)的若干性質(zhì),如最大值最小值定理、零點定理等,都是指的閉區(qū)間上連續(xù)函數(shù)的性質(zhì);中值定理那一章節(jié)里,很多定理成立的條件都是所給函數(shù)在閉區(qū)間上連續(xù)、開區(qū)間上可導(dǎo);應(yīng)用得非常多的格林公式和高斯公式成立的條件是對應(yīng)的閉合曲線或閉合曲面所包圍的區(qū)域內(nèi)不含奇點,在所求積分區(qū)域不閉合時要用補線或補面的方法,當(dāng)有奇點時要想辦法把單連通區(qū)域轉(zhuǎn)化成多連通區(qū)域,使得對應(yīng)的多連通區(qū)域不含奇點后才能應(yīng)用相應(yīng)的定理。強烈建議大家在復(fù)習(xí)過程中自己多總結(jié),總的來說,記得知識點不是難事,但是一定要注意同時把某一知識點對應(yīng)的適用條件也掌握好!只有同時把這兩方面把握住了,概念這一塊才算過關(guān),才算打好了基礎(chǔ)。
運算能力
這里所說的運算能力包括速度和準(zhǔn)確率兩個方面,多數(shù)人一定有這樣的感受:一張數(shù)學(xué)卷子發(fā)下來,題目都會做,都有思路,但是一做起來就漏洞百出,總有地方出錯,結(jié)果時間自然不夠。歸根結(jié)底就是因為自己平時從來不練,看到一道題,先想思路,如果方法上沒有什么障礙的話就認為不會有問題了,其實事實上如果真的動手去做很可能發(fā)現(xiàn)并非想象那么簡單。
專家的建議是:書后習(xí)題不用全做,因為拿高數(shù)書來說,每章后邊的習(xí)題都是分大題小題的,一道大題可能有若干小題,那么這些小題基本算上同一類的,有選擇性的做就可以了,注意把不同類型的題目都涉及到就差不多了,然后是李永樂或者其它復(fù)習(xí)參考書后的習(xí)題。
運算方面的內(nèi)容:求極限、求導(dǎo)數(shù)、求高階導(dǎo)數(shù)、求不定積分、求向量的點積和叉積、復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t、行列式或矩陣的初等變換、矩陣的乘法等等,一定要練到熟得不能再熟,基本不出錯的地步。運算速度到后期顯得比較重要,因為沖刺階段都是要整張卷子的做,這時不僅要分配好各部分題目的時間,而且要確保能在預(yù)計的時間里完成相應(yīng)的任務(wù),否則會對個人的情緒產(chǎn)生影響,考研數(shù)學(xué)九道大題,至少應(yīng)該留兩個小時來做,專家覺得比較好的時間分配是:選填題45分鐘,解答題2小時。 |